CONTENTS IN DETAIL

1	DNA Replication Forks	43
2		43
	SEQUENCE OF EVENTS AT REPLICATION FORKS	46
	DNA Unwinding And Leading-Strand Synthesis	47
		49
		50
	Conservation Of Replication-Fork Events	53
	ORGANIZATION OF REPLICATION FORKS	54
	Replication-Fork Configuration	54
	Replication-Fork Factories	56
	REPLICATION-FORK VELOCITY	58
	NUCLEO TIDE POOLS	59
	SUMMARY	61
	Additional Reading	62
13	Literature Cited	62
	LEADING-STRAND SYNTHESIS	63
	DNA HELICASES	63
		65
		66
	Rotary Engine Activity Of DNA Helicases	67
	How Helicases Unwind DNA	68
	SINGLE-STRAND-SPECIFIC DNA-BINDING	
	PROTEINS	70
	DNA POLYMEDASES	73
20		73 74
27		76
07		83
		84
		84
		85
	•	
		85
		86 87
	**	88
	•	
3/		90
37	•	91
37	Ellerature Cited	92
	CHAPTER 5 REPLICATION PROTFINS:	
39		93
39		
40	KNA-PRIMED NASCENT DNA	93
42	DNA PRIMASE	96
	13 15 17 19 19 19 20 20 22 23 25 25 27 27 27 28 30 30 30 33 34 34 35 37 37 37 39 40	DNA Unwinding And Leading-Strand Synthesis DNA Unwinding And Leading-Strand Synthesis DNA Relaxation Lagging-Strand Synthesis Conservation Of Replication-Fork Events ORGANIZATION OF REPLICATION FORKS Replication-Fork Configuration Replication-Fork Factories REPLICATION-FORK VELOCITY NUCLEOTIDE POOLS SUMMARY Additional Reading Literature Cited CHAPTER 4 REPLICATION PROTEINS: LEADING-STRAND SYNTHESIS DNA HELICASES The DnaB Family Of Helicases Rotary Engine Activity Of DNA Helicases How Helicases Unwind DNA SINGLE-STRAND-SPECIFIC DNA-BINDING PROTEINS DNA POLYMERASES The DNA Polymerase I Paradigm DNA Polymerase Families DNA Polymerase Fidelity And Molecular Evolution SLIDING CLAMPS Bacteria Archaea And Eukarya DNA TOPOISOMERASES Type IA Enzymes Type IB Enzymes Type IB Enzymes SType II Enzymes SUMMARY Additional Reading Literature Cited CHAPTER 5 REPLICATION PROTEINS: LAGGING-STRAND SYNTHESIS RNA-PRIMED NASCENT DNA

INITIATION OF OKAZAKI-FRAGMENT SYNTHESIS	98	EUKARYOTIC CHROMATIN AND DNA REPLICATION	147
THE HELICASE-PRIMASE PARADOX	99 100	Replication Origins Replication Forks	147 148
Bacteria Archaea And Eukarya	100	SISTER CHROMATID COHESION	154
HAND-OFF FROM PRIMASE TO POLYMERASE Bacteria	101 101	Formation Of A Cohesin Ring Around Sister Chromatids Establishment Of Cohesion Between Sister	155
Eukarya HAND-OFF FROM INITIATOR POLYMERASE TO	102	Chromatids Dissolution Of Cohesion Between Sister Chromatids	157 158
REPLICATOR POLYMERASE	102	DUPLICATION OF EPIGENETIC INFORMATION	159
SLIDING CLAMP LOADERS Bacteria	103 103	Nucleosome Segregation and Positioning Protein Modification DNA Methylation	159 161 163
Archaea And Eukarya	104	·	
PRIMER EXCISION Bacteria Eukarya	105 105 106	SUMMARY Additional Reading Literature Cited	166 167 167
DNA LIGATION	107	CHAPTER 8 REPLICONS	169
THE RINGMASTER	109		
DYNAMIC PROCESSIVITY	111	THE REPLICON MODEL The Classical Replicon Model	169
		The Replicon Model Today	170
SUMMARY Additional Reading	114 115	Visualizing Replicons Why Replicons?	171 174
CHAPTER 6 TERMINATION	117	REPLICON TAXONOMY	175
REPLICATION-FORK TERMINATION When Forks Collide	117 117	DNA Structure And Replicator Location Modes Of DNA Replication Modes Of DNA Synthesis	175 176 176
Topological Problems Unique To Replication-Fork Termination	118	SIX MANIFESTATIONS OF THE REPLICON	178
REPLICATION-FORK BARRIERS	120	A. dsDNA With Internal Replicators That Use Replication Forks	178
Replication-Fork Barriers In Bacteria Replication-Fork Barriers In Eukarya	120 124	B. dsDNA With Internal Replicators That Use Single-Strand Displacement	179
OTHER IMPEDIMENTS TO REPLICATION FORKS	126	C. dsDNA With Internal Replicators That Use The Rolling Circle	181
THE ROLE OF REPLICATION-FORK BARRIERS IN NATURE	127	D. dsDNA With Terminal Replicators That Use Single-Strand Displacement And Then Gap-Filling	182
THE TERMINATION PARADOX Protein-Nucleotide Primers	127 128	E. ssDNA With Internal Replicators That Use Gap-Filling And Then Single-Strand Displacement F. ssDNA With Terminal Replicators That Use	183
Circularization	128	Gap-Filling And Then Single-Strand Displacement	185
Concatemer Formation Telomeres And Telomerase	128 128	SUMMARY	188
SUMMARY	133	Additional Reading	189
Additional Reading	134	Literature Cited	189
CHAPTER 7 CHROMATIN ASSEMBLY,		CHAPTER 9 REPLICATION ORIGINS	191
COHESION, AND MODIFICATION	135	PATTERNS OF INITIATION	192
CHROMATIN	136	FINDING REPLICATION ORIGINS	193
Bacteria	136	Replicator Activity	193
Archaea Eukarya	140 142	Origins Of Bidirectional Replication Nascent-Strand Abundance	194 194

DNA Sequence Duplication	194	BACTERIAL GENOMES	269
Leading-Strand Sequence Bias	195	preRC Assembly On Bacterial Genomes preIC Assembly On Bacterial Genomes	270 272
CHARACTERISTICS OF REPLICATION ORIGINS	195		
Origin Anatomy Origin Specificity	195 197	ARCHAEAL GENOMES	273
Origin Specificity Origin Function	197	EUKARYAL GENOMES	275
Origin Density	202	preRC Assembly (Origin Licensing) On Eukaryotic	
Origin Usage	204	Genomes	275
Origin Timing	205	preIC Assembly On Eukaryotic Genomes	281
DEVELOPMENTAL ACQUISITION OF		SUMMARY	285
SITE-SPECIFICITY	206	Additional Reading	286
PARADOXES AND SOLUTIONS	207	Literature Cited	286
The Replicator Paradox	207	CHAPTER 12 CELL CYCLES	287
The Site-Selection Paradox	213	CHAITER 12 CELECTOEES	207
The MCM Paradox	215	THE BACTERIAL CELL CYCLE	287
SUMMARY	218	The Initiator/Replicator Ratio Triggers Genome	
Additional Reading	221	Duplication	289
Literature Cited	222	Suppression of Reinitiation Within A Single Cell Cycle	290
CHAPTER 10 ORIGIN PARADIGMS	223	THE ARCHAEAL CELL CYCLE	293
DNA-NICKING MECHANISM	223	THE EUKARYOTIC MITOTIC CELL CYCLE	293
DOTEIN DRIMING MECHANICM	224	Common Features	293
PROTEIN-PRIMING MECHANISM	224	Abbreviated Mitotic Cell Cycles	295
DNA TRANSCRIPTION MECHANISM	227	Cell-Cycle Analysis	295
Bacteriophage T7	227	Accelerators And Brakes	298
Bacteriophage T4	229	Yin And Yang	301
Bacterial Plasmid ColE1 Mitochondrial DNA	229 230	GENOME DUPLICATION PRECEDES CELL DIVISION	302
			302
DNA HELICASE MECHANISM	232	Driving the $G_2\rightarrow M$ Transition Regulating preRC Assembly	304
Simian Virus 40	232 234	Driving The $M \rightarrow G_1$ Transition	305
Polyomavirus Papillomavirus	234	Driving The $G_1 \rightarrow S$ Transition	307
Herpes Simplex Virus	234	PREVENTING DNA RE-REPLICATION	309
DNA HELICASE LOADER MECHANISM	235	Single-Cell Eukarya	310
Bacteria Bacteria	236	Multicellular Eukarya	311
Archaea	240	PARALLEL PATHWAYS	315
Single-Cell Eukarya	242	FARALLEL FAITIWATS	313
Multicellular Eukarya	246	FUNCTIONAL REDUNDANCY	316
WHY DNA HELICASE LOADERS?	254	DEVELOPMENTALLY PROGRAMMED	247
AMPLIFICATION ORIGINS	255	POLYPLOIDY	316
Sciara coprophila	255	Initiating Endocycles Sustaining Endocycles	318 321
Drosophila melanogaster	255	Two APCs, Two Cell Cycles	321
Tetrahymena thermophila	258	•	
SUMMARY	259	SUMMARY Additional Reading	322 324
CHAPTER 11 INITIATION	261	· ·	
THE ROAD TO REPLICATION FORKS	262	CHAPTER 13 CHECKPOINTS	325
Replication-Fork Assembly And Cell Proliferation	264	RESTRICTION CHECKPOINT	328
Where The Road Splits	266	Bacteria	328
•		Archaea	330
VIRAL GENOMES	267	Eukarya	330

xiii

DNA DAMAGE RESPONSE	335	PHARMACOLOGICAL AGENTS THAT TARGET	
The SOS Response In Bacteria	337	DNA REPLICATION	391
Restarting Replication Forks In Bacteria	340	Antiviral Pharmaceuticals	391
Archaea	346	Antibiotic Pharmaceuticals	396
Eukarya G ₁ DNA Damage Checkpoint	346 349	Anti-Cancer Pharmaceuticals	397
DNA-Replication Checkpoint	349 350	SUMMARY	406
G ₂ DNA Damage Checkpoint	353	Additional Reading Literature Cited	408 408
THE EUKARYOTIC REPLISOME REVISITED	354	Literature Cited	400
Stabilization Of Replication Forks	355	CHAPTER 15 EVOLUTION OF	
Mediators	357	CELLULAR REPLICATION	
Replication-Fork Restart In Eukarya	357	MACHINES	409
G ₂ CHECKPOINT	358	REPLICATION MACHINES IN BACTERIA,	
Bacteria	359	ARCHAEA, AND EUKARYA	409
Eukarya	359	•	
SPINDLE-ASSEMBLY CHECKPOINT	360	MAKING THE JUMP FROM RNA TO	444
Mitotic Cells	360	DNA GENOMES	411
Meiotic Cells	362	A ROLE OF VIRUSES IN THE EVOLUTION	
SUMMARY	364	OF DNA GENOMES?	412
Additional Reading	366	DID DNA EVOLVE IN VIRUSES AS A WAY	
Literature Cited	366	TO EVADE HOST DEFENSES?	412
CHAPTER 14 HUMAN DISEASE	367	REPLICON TAKEOVER	414
		THE ACQUISITION OF MULTIPLE	
INFECTIOUS DISEASES	368	REPLICATION ORIGINS	415
Viruses Bacteria	368 373	VIRUSES AS A FOSSIL RECORD	416
Archaea	373 373	VIRUSES AS A POSSIL RECORD	410
		SUMMARY	416
NONINFECTIOUS DISEASES	374	Additional Reading	417
The Road To Cancer	374		
DNA Replication Proteins As Cancer Biomarkers	380	GLOSSARY	418
HERITABLE DISEASES	382	INDEX	425
The 'Seven Deadly Sins' Of DNA Replication	382		
The Road To Nucleotide-Repeat Disorders	384		
Mutations In DNA Replication Genes	389		